

PII: S0040-4039(96)00982-3

A Simple One-Pot Preparation of 2-Pyridones from Acyl Isocyanates Utilizing Trimethylsilylketene

Kiyo Takaoka, Toyohiko Aoyama,* and Takayuki Shioiri*

Faculty of Pharmaceutical Sciences, Nagoya City University Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

Abstract — Trimethylsilylketene reacts with acyl isocyanates to give 4-trimethylsiloxy-1,3-oxazin-6-ones which smoothly undergo the Diels-Alder reaction with dimethyl acetylenedicarboxylate and methyl propiolate to furnish 2-pyridones. Copyright © 1996 Elsevier Science Ltd

Recent publications from our laboratories have disclosed the first example of the [4+2] cycloaddition reaction of silylketenes with electron-rich 1,3-dienes and o-quinodimethanes, 1 and the novel type of cycloaddition reaction of silylketenes with enamines. Our continued interest in the reactivity of silylketenes has led us to investigate the reaction of trimethylsilylketene (TMSCH=C=O) with acyl isocyanates 1.3 Although the [4+2] cycloadducts 2 from this reaction were labile, we have found that they easily react with some acetylenes to give 2-pyridones 3 or 4.

$$\begin{array}{c}
O \\
R - C - N = C = O
\end{array}$$

$$\begin{array}{c}
Me_3SiO \\
\end{array}$$

$$\begin{array}{c}
N \\
R
\end{array}$$

$$\begin{array}{c}
X \\
CO_2Me \\
O \\
N \\
R
\end{array}$$

$$\begin{array}{c}
X \\
CO_2Me \\
O \\
\end{array}$$

First, TMSCH=C=O was allowed to react with benzoyl isocyanate (1a) in benzene at reflux for 3 h, as shown in Scheme 1. Purification of the crude products by recrystallization gave the acid 5a in 84% yield, and no [4+2] cycloadduct 2a or 6a could be detected. The ¹H NMR of the crude reaction mixture showed the signal of an olefinic proton at 5.24 ppm as a singlet in addition to the signal of the TMS group at 0.32 ppm. The IR spectrum exhibited an absorption at 1753 cm⁻¹, characteristic of the 1,3-oxazin-6-one structure.⁴ These data indicated that the reaction of TMSCH=C=O with 1a would first give the [4+2] cycloadduct, 4-trimethylsiloxy-1,3-oxazin-6-one (2a). The adduct 2a would be very sensitive to moisture and was immediately hydrolyzed to 5a during recrystallization.⁵ In contrast to the results, the reaction of ketene with 1a has been reported to give 6a as an isolable product.⁴

We thought that 2a could be trapped by appropriate dienophiles if 2a acts as a diene component of the Diels-Alder reaction. 6 In fact, treatment of 2a, generated in situ, with dimethyl acetylenedicarboxylate (DMAD) in benzene at reflux gave the 2-pyridone 3a though the yield was very low as shown in Scheme 2. However, changing the reaction solvent to o-dichlorobenzene or o-dimethoxybenzene led to a significant improvement in the yield. The obvious intermediate will be the cycloadduct 7 which will spontaneously loose carbon dioxide to give 2-pyridones 3 or 4.

Thus, we have found that TMSCH=C=O smoothly reacts with acyl isocyanates 1 to give the 1,3oxazin-6-one intermediates 2 which easily undergo the Diels-Alder reaction with DMAD or methyl propiolate to furnish the corresponding 2-pyridones 3 or 4 after expulsion of carbon dioxide.

$$\begin{array}{c}
O \\
R-C-N=C=O
\end{array}$$

$$\begin{array}{c}
Me_3SiCH=C=O \\
1
\end{array}$$

$$a: Ph, b: 4-MeC_6H_4, c: 4-NO_2C_6H_4, \\
\end{array}$$

d: 4-MeOC₆H₄, e: 2-Furyl, f: 2-Thienyl,

g: PhCH2CH2

$$\begin{bmatrix} X & CO_2Me \\ Me_3SiO & N & R \end{bmatrix} \xrightarrow{1) - CO_2} \begin{bmatrix} X & CO_2Me \\ 2) H_2O & \\ - Me_3SiOH & H \end{bmatrix}$$

$$7 & 3: X = CO_2Me$$

$$Scheme 2 & 4: X = H$$

Scheme 2

A typical experimental procedure is as follows: A mixture of 1 (1 mmol) and TMSCH=C=O (1.2 eq.) in a solvent (3 ml) was heated at 90°C for 2~3 h under argon. DMAD (2 eq.) or methyl propiolate (4 eq.) was then added and the mixture was stirred at reflux (for o-dichlorobenzene) or at 195°C (for o-dimethoxybenzene) for 3~7 h. After concentration in vacuo, the residue was purified by column chromatography on silica gel (BW-200, Fuji Davison, hexane then hexane: AcOEt=5:1~1:5) to give the 2-pyridone 3 or 4.

The results are summarized in the Table. Various aromatic and heteroaromatic acyl isocyanates were smoothly converted to the corresponding 2-pyridones 3 and 4. Aliphatic acyl isocyanate such as 3-phenypropionyl isocyanate also underwent the reaction to give 3g though the yield was moderate. Unfortunately, cyclohexylcarbonyl isocyanate and pivaloyl isocyanate were completely inert. Both odichlorobenzene and o-dimethoxybenzene were the solvent of choice when using DMAD, but odimethoxybenzene was preferable when using methyl propiolate. Substituents at the 4-position on the benzene ring of 1 considerably affected the yield. The substitution of the electron-withdrawing group increased the yield of 3 and 4, while the yield decreased with the substitution of the electron-donating group. Excess (2~4 equivalents) acetylene is required to smoothly conduct the reaction, since the reaction proceeded slowly with the use of a slight excess of acetylenes. The other acetylenes such as phenylacetylene and diphenylacetylene were unreactive to 2.

Table.^a A One-Pot Preparation of 2-Pyridones 3 and 4

Compd.				Reaction	Yield	IR(nujol)	¹ H NMR(CDCl ₃)	mpc, d
No.	R	X	Solventb	Time (h)	(%)	cm ⁻¹ , NHC=	O ppm, C(3)-H	(°C)
3a	Ph	CO ₂ Me	A	3	75	1665	6.90(s)	194-195
3 b	4-MeC6H4	CO ₂ Me	Α	3	76	1669	6.99(s)	233-235
3 c	4-NO2C6H4	CO ₂ Me	Α	3	84	1663	6.98(s)	252-253
3 c	4-NO ₂ C ₆ H ₄	CO ₂ Me	В	3	99	1663	6.98(s)	252-253
3 d	4-MeOC ₆ H ₄	CO ₂ Me	Α	4	64	1661	6.98(s)	225-227
3 e	2-Furyl	CO ₂ Me	Α	3	92	1657	7.02(s)	205-208
3 f	2-Thienyl	CO ₂ Me	Α	3	54	1651	7.03(s)	183-185
3 g	Ph(CH ₂) ₂ -	CO ₂ Me	Α	3	23	1669	6.71(s)	208-210
4a	Ph	Н	В	6	49	1651	6.52(d)	176-178
							(J=9.57 Hz)	
4 c	4-NO ₂ C ₆ H ₄	Н	В	7	65	1663	6.54(d)	257-258
							(J=9.57 Hz)	
4 d	4-MeOC ₆ H ₄	H	В	4	22	1653	6.50(d),	207-208
							(J=9.57 Hz)	
4 e	2-Furyl	Н	В	5	63	1640	6.45(d)	180-181
							(J=9.57 Hz)	

a) All new products gave satisfactory elemental analysis and spectral data. b) A = o-dichlorobenzene, B = o-dimethoxybenzene. c) Recrystallized from tetrahydrofuran-hexane. d) Melting points were measured on a hot-plate.

In the case of methyl propiolate, the reaction was completely regioselective and no regioisomer of 4 could be detected. The observed high selectivity of the addition can be explained by calculated data of the atomic charges of 1a and methyl propiolate as shown in Fig.1.7

Fig. 1

In conclusion, the present method using TMSCH=C=O makes possible the conversion of acyl isocyanates to 2-pyridones in a one-pot process and will provide added flexibility in the pyridone synthesis.

Acknowledgment We thank Mr. T. Matsumoto (Nagoya City University) for the AM1 calculation of the atomic charges of **1a** and methyl propiolate.

References and Notes

- 1. Ito, T.; Aoyama, T.; Shioiri, T. Tetrahedron Lett. 1993, 34, 6583-6586.
- 2. Takaoka, K.; Aoyama, T.; Shioiri, T. Synlett 1994, 1005-1006.
- 3. Speziale, A. J.; Smith, L. R. J. Org. Chem. 1963, 28, 1805-1811.
- a) Zakhs, V. É.; Yakovlev, I. P.; Smorygo, N. A.; Gindin, V. A.; Ivin, B. A. Chem. Heterocycl. Compd. USSR 1986, 325-332; b) Zakhs, V. É.; Yakovlev, I. P.; Tret'yakov, A. A.; Gindin, V. A.; Prep'yalov, A. V.; Ivin, B. A. J. Org. Chem. USSR 1991, 27, 744-751.
- 5. 2-Phenethyl-4-trimethylsiloxy-1,3-oxazin-6-one (**2g**), prepared from the reaction of TMSCH=C=O and 3-phenylpropionyl isocyanate (**1g**), could be isolated by distillation (bp 190°C/1mmHg) in 41% yield. Again, **2g** was hydrolyzed with water within a few minutes to give the corresponding acid **5g**. **2g**: IR(neat): 1762, 1625 cm⁻¹. ¹H NMR (CDCl₃) δ: 0.32 (s, 9H), 2.90-3.10 (m, 4H), 5.28 (s, 1H), and 7.18-7.31 (m, 5H).
- Boger, D. L.; Weinreb, S. M., "Hetero Diels-Alder Methodology in Organic Synthesis", ed. by Wasserman, H. H. Academic Press, Inc., 1987, Chapter 9; Steglich, W.; Jeschke, R.; Buschmann, E. Gazz. Chim. Ital. 1986, 116, 361-372.
- 7. The atomic charges of 1a and methyl propiolate were calculated by AM1, see Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902-3909.

(Received in Japan 22 April 1996; revised 17 May 1996; accepted 22 May 1996)